miércoles, 6 de septiembre de 2017

APRENDA DE LA PROYECCIÓN



Número racional es todo número que puede representarse como el cociente de dos números enteros o, más precisamente, un entero y un natural positivo es decir, una fracción común con numerador  y denominador  distinto de cero. El término «racional» alude a una fracción o parte de un todo. El conjunto de los números racionales se denota por Q (o bien , en negrita de pizarra) que deriva de «cociente» (Quotient en varios idiomas europeos). Este conjunto de números incluye a los números enteros (), y es un subconjunto de los números racionales.


Inmersión de enteros

Cualquier entero n se puede expresar como el número racional n/1 debido a eso se escribe frecuentemente  (técnicamente, se dice que los racionales contienen un subanillo isomorfo al anillo de los números enteros).

Equivalencia

 si y solo si 

Cuando ambos denominadores son positivos:
 si y solo si 
Si cualquiera de los denominadores es negativo, las fracciones primero deben convertirse en otras equivalentes con denominadores positivos, siguiendo las ecuaciones:
y

Operaciones

A las operaciones de suma, resta, multiplicación y división se les llama operaciones racionales.10

Suma

Se define la suma o adición de dos números racionales a la operación que a todo par de números racionales le hace corresponder su suma:

Resta

La operación que a todo par de números racionales le hace corresponder su diferencia se llama resta o diferencia y se la considera operación inversa de la suma.10
.

Multiplicación

La multiplicación o producto de dos números racionales:
.

División

Se define la división o cociente de dos racionales r entre s distinto de 0, al producto . En otra notación,
.
Es una operación totalmente definida, pero se asume que es una operación inversa de la multiplicación que resuelve la ecuación s·x=rs≠0.

Inversos

Los inversos aditivo y multiplicativo existen en los números racionales:


Número racional en base decimal



Todo número real admite una representación decimal ilimitada, esta representación es única si se excluyen secuencias infinitas de 9(como por ejemplo el 0,9 periódico). Utilizando la representación decimal, todo número racional puede expresarse como un número decimal finito (exacto) o periódico y viceversa. De esta manera, el valor decimal de un número racional, es simplemente el resultado de dividir el numerador entre el denominador.
Los números racionales se caracterizan por tener una escritura decimal que solo puede ser de tres tipos:
  • Exacta: la parte decimal tiene un número finito de cifras. Al no ser significativos, los ceros a la derecha del separador decimal pueden omitirse, lo que da por resultado una expresión «finita» o «terminal». Por ejemplo:
  • Periódica pura: toda la parte decimal se repite indefinidamente. Ejemplo:
  • Periódica mixta: no toda la parte decimal se repite. Ejemplo:
De la misma manera se aplica la representación de un número racional en un sistema de numeración posicional en bases distintas de diez.

 Recordemos que el conjunto de los números enteros se denota por $\input{Z.eepic}$ y se define de la manera siguiente:

\begin{displaymath}\input{Z.eepic}= \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}\end{displaymath}

Podemos representar los números enteros como puntos de una recta de la manera siguiente:
El segmento de recta comprendido entre dos números enteros consecutivos se llama "segmento unidad".
De manera similar, recordemos que el conjunto de los números racionales se denota por $\input{Q.eepic}$ y se define de la manera siguiente:
\begin{displaymath}\input{Q.eepic}=\left\{ \frac{a}{b} \;\; / \;\; a \in \input{Z.eepic}, b \in \input{Z.eepic}, b \not= 0 \right\}\end{displaymath}

Debido a que si $a \in \input{Z.eepic}$$b \in \input{Z.eepic}$$b > 0$ entonces se cumple que $\displaystyle \frac{a}{-b} = \frac{-a}{b}$; se conviene en representar los números racionales preferentemente por medio de fracciones en las cuales el denominador es un número entero positivo.
Recordemos además que si $a \in \input{Z.eepic}$$b \in \input{Z.eepic}$$b > 0$, el número racional $\displaystyle \frac{a}{b}$ se puede considerar como el cociente que se obtiene al dividir $a$ por $b$; en donde $b$indica el número de partes en que se divide la unidad y $a$ el número de partes que se toman.
De esta manera, si se divide en dos partes iguales cada segmento unidad en la recta numérica, podemos representar los números racionales cuya representación fraccionaria tiene como denominador 2, como se muestra en el ejemplo siguiente.
Ejemplo
Represente en la recta numérica los siguientes números racionales:
  1. $\displaystyle \frac{3}{2}$
  1. $\displaystyle \frac{7}{2}$
  1. $\displaystyle \frac{-1}{2}$
  1. $\displaystyle \frac{-5}{2}$
Solución:
De igual manera, si se dividen en tres partes iguales cada segmento unidad en la recta, podemos representar los números racionales cuya representación fraccionaria tiene como denominador 3, como se muestra en el ejemplo siguiente.
Ejemplo
Represente en la recta numérica los siguientes números racionales:
  1. $\displaystyle \frac{4}{3}$
  1. $\displaystyle \frac{8}{3}$
  1. $\displaystyle \frac{-2}{3}$
  1. $\displaystyle \frac{-7}{3}$
Solución:
Generalizando el procedimiento descrito anteriormente se puede representar cualquier número racional en la recta numérica.
Ejercicio
Represente en un recta numérica los siguientes números racionales:
  1. $\displaystyle \frac{5}{2}$
  1. $\displaystyle \frac{7}{3}$
  1. $\displaystyle \frac{-9}{4}$
  1. $\displaystyle \frac{-14}{5}$
Solución
Nota: También se pueden representar los números racionales en la recta numérica, considerando su expansión decimal y ubicándolos en forma aproximada en la recta numérica, como se muestra en el ejemplo siguiente.
Ejemplo
Represente en una recta numérica los siguientes números racionales.
  1. $\displaystyle \frac{7}{9}$
  1. $\displaystyle \frac{34}{15}$
  1. $\displaystyle \frac{-9}{7}$
  1. $\displaystyle \frac{-17}{5}$
Solución
Utilizando la calculadora se puede notar que:
  1. $\displaystyle \frac{7}{9}=0,\overline{7}$
  2. $\displaystyle \frac{34}{15}=2,2\overline{6}$
  1. $\displaystyle \frac{-9}{7}=-1,\overline{285714}$
  2. $\displaystyle \frac{-17}{5}=-3,4$
De esta manera

No hay comentarios.:

Publicar un comentario